Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethane-1,2-diaminium bis{5-[4-(1*H*-tetrazol-5-yl)phenyl]tetrazolide} dihydrate

Chun-Rong Li^a and Zheng-Qiang Xia^{b*}

^aSchool of Environmental Science and Engineering, Chang'an University, Xi'an 710054, Shaanxi, People's Republic of China, and ^bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China

Correspondence e-mail: northwindy@126.com

Received 22 July 2011; accepted 20 August 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.122; data-to-parameter ratio = 11.9.

In the two anions of the title salt, $C_2H_{10}N_2^{2+}\cdot 2C_8H_5N_8^{-}\cdot 2H_2O$, the central aromatic rings make dihedral angles of 13.53 (6) and 6.53 (7)° with the deprotonated tetrazole rings, and 11.39 (6) and 10.41 (9)° with the other tetrazole groups. In the crystal, the cations, anions and water molecules are linked by an extensive $O-H\cdots N$, $N-H\cdots O$ and $N-H\cdots N$ hydrogenbond network into two-dimensional wave-like duplex sheets extending parallel to the *bc* plane. $\pi-\pi$ stacking interactions between benzene rings [intercentroid distances are 3.8482 (4) and 3.9621 (5) Å] and between tetrazole rings [intercentroid distances the crystal structure.

Related literature

For similar structures, see: Tao *et al.* (2004); Deng *et al.* (2010); He *et al.* (2008). For 5,5'-(1,4-phenylene)bis(1*H*-tetrazole) applied in coordination chemistry, see: Liu *et al.* (2010); Ouellette *et al.* (2009); Dinca *et al.* (2006); Qiao *et al.* (2011).

= 7.3918 (9) Å

= 12.4699 (16) Å

= 13.6367 (17) Å

Experimental

Crystal data	
$C_2H_{10}N_2^{2+} \cdot 2C_8H_5N_8^{-} \cdot 2H_2O$	а
$M_r = 524.55$	b
Triclinic, P1	с

 $\alpha = 89.774 (2)^{\circ}$ $\beta = 78.556 (2)^{\circ}$ $\gamma = 74.153 (2)^{\circ}$ $V = 1183.5 (3) \text{ Å}^{3}$ Z = 2

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2008) $T_{min} = 0.966, T_{max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 345 parameters $wR(F^2) = 0.122$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.19$ e Å⁻³4089 reflections $\Delta \rho_{min} = -0.23$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2B\cdots N4A^{i}$	0.82	2.02	2.843 (2)	177
$O2-H2A\cdots N13A$	0.85	2.08	2.919 (2)	173
$O1 - H1A \cdot \cdot \cdot N4B$	0.84	2.02	2.857 (2)	179
$O1 - H1B \cdot \cdot \cdot N13B^{ii}$	0.85	2.10	2.946 (2)	174
N10-H10E···N3A ⁱⁱⁱ	0.89	2.02	2.869 (2)	160
$N10-H10D\cdots N1B^{iv}$	0.89	2.00	2.848 (2)	159
$N10-H10C\cdots N14A^{v}$	0.89	2.08	2.938 (2)	163
N9−H9E···N1A ^{vi}	0.89	1.98	2.8517 (19)	165
$N9-H9D\cdots N14B^{ii}$	0.89	2.13	2.888 (2)	143
N9−H9C···N3B	0.89	2.01	2.856 (2)	159
$N11B - H11B \cdots O2$	0.86	1.86	2.685 (2)	161
$N11A - H11A \cdots O1$	0.86	1.87	2.6903 (19)	160

Symmetry codes: (i) x, y + 1, z; (ii) x, y - 1, z; (iii) -x, -y, -z + 1; (iv) -x, -y + 1, -z + 2; (v) -x, -y + 1, -z + 1; (vi) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We gratefully acknowledge the National Science Foundation of China (grant No. 20873100) and Natural Science Foundation of Shaanxi Province (grant No. FF10091).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YK2016).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Deng, J. H., Yuan, X. L. & Mei, G. Q. (2010). Inorg. Chem. Commun. 13, 1585– 1589.

Dinca, M., Yu, A. F. & Long, J. R. (2006). J. Am. Chem. Soc. 128, 8904–8913. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- He, X., An, B.-L. & Li, M.-X. (2008). Acta Cryst. E64, 040.
- Liu, W. T., Ou, Y. C., Lin, Z. J. & Tong, M. L. (2010). *CrystEngComm*, **12**, 3487–3489.
- Ouellette, W., Prosvirin, A. V., Whitenack, K., Dunbar, K. R. & Zubieta, J. (2009). Angew. Chem. Int. Ed. 48, 2140–2143.
- Qiao, C. F., Wie, Q., Xia, Z. Q., Liang, J. H. & Chen, S. P. (2011). *Chin. J. Chem.* **29**, 724–730.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

 $0.32 \times 0.28 \times 0.11 \text{ mm}$

5924 measured reflections

4089 independent reflections

3254 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int}=0.017$

Tao, J., Ma, Z. J., Huang, R. B. & Zheng, L. S. (2004). Inorg. Chem. 43, 6133– 6135.

Acta Cryst. (2011). E67, o2481 [doi:10.1107/S1600536811034143]

Ethane-1,2-diaminium bis{5-[4-(1H-tetrazol-5-yl)phenyl]tetrazolide} dihydrate

C.-R. Li and Z.-Q. Xia

Comment

Recently, 5,5'-(1,4-phenylene)-bis(1*H*-tetrazole) has been widely employed in the construction of many useful metal-organic frameworks (Liu *et al.*, 2010; Ouellette *et al.*, 2009; Dinca *et al.*, 2006). This compound attracted our attention and our recent investigation on it (Qiao *et al.*, 2011) has revealed its potential applications in energetic materials as the additives for the propellant. However, reports on its use in the construction of co-crystals are very scarce. Here, in the reaction of ethylenediamine, 5,5'-(1,4-phenylene)bis(1*H*-tetrazole) and PbCl₂ under hydrothermal conditions, we have unexpectedly obtained the title compound, $C_2H_{10}N_2^{2+}.2C_8H_5N_8^-.2H_2O$, and determined its crystal structure.

The asymmetric unit of the title salt is composed of one ethylenediaminium cation, two 5-[4-(1*H*-tetrazol-5-yl)phenyl]tetrazolide monoanions and two water molecules (Fig.1). Both the amine N atoms of the ethylenediaminium cation are protonated. The geometric parameters are within the normal ranges.

In the crystal structure, the two terminal tetrazole rings of the anions are nearly coplanar with the dihedral angles of 5.03 (7) or 6.37 (10)°. It is noteworthy that there are two types of π - π stacking interactions: one occurs between benzene rings with centroid-centroid distances of 3.8482 (4) and 3.9621 (5) Å, the other occurs between tetrazole rings with centroid-centroid distances of 3.4350 (4) and 3.7169 (4) Å. Thus, a wide range of hydrogen bonds (O—H···N, N—H···O and N—H···N) (Table 1) and π - π stacking interactions contribute to the formation of the supramolecular network (Fig. 2).

Experimental

Lead chloride (0.0278 g, 0.1 mmol) and 5,5'-(1,4-phenylene)-bis(1*H*-tetrazole) (0.0215 g, 0.1 mmol) were added to water (6 ml). The pH of this solution was adjusted to neutral with ethylenediamine solution. The solution was sealed in a 10-ml Teflon-lined stainless reactor at 393 K for 3 days. After the sample was cooled to room temperature at a rate of 5 K/h, the colorless block crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 (methylene) and 0.93 Å (aromatic), $U_{iso}(H) = 1.2Ueq(C)$. The H atoms bonded to N atoms were placed in calculated positions and refined in riding mode with N—H = 0.86 (tetrazole) and 0.89 Å (amine), $U_{iso}(H) = 1.2Ueq(N \text{ of tetrazole})$, $U_{iso}(H) = 1.5Ueq(N \text{ of amine})$. The water H atoms were located in difference Fourier maps, with distance restraints of O—H = 0.84±0.02 Å, and then refined with isotropic thermal parameters 1.5 times those of O atoms.

Figures

Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and displacement ellipsoids drawn at the 30% probalility level.

Fig. 2. A view of the crystal packing of the title compound, showing the O—H…N, N—H…O and N—H…N hydrogen bonds interactions. Symmetry operators: ${}^{i}x, y + 1, z$; ${}^{ii}x, y - 1, z$; ${}^{iii} - x, -y, -z + 1$; ${}^{iv} -x, -y + 1, -z + 2$; ${}^{v} -x, -y + 1, -z + 1$; ${}^{vi}x, y, z + 1$.

Ethane-1,2-diaminium bis{5-[4-(1H-tetrazol-5-yl)phenyl]tetrazolide} dihydrate

Crystal data

$C_2H_{10}N_2^{2+}\cdot 2C_8H_5N_8^{-}\cdot 2H_2O$	Z = 2
$M_r = 524.55$	F(000) = 548
Triclinic, <i>P</i> T	$D_{\rm x} = 1.472 \text{ Mg m}^{-3}$ $D_{\rm m} = 1.472 \text{ Mg m}^{-3}$ $D_{\rm m}$ measured by not measured
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.3918 (9) Å	Cell parameters from 2314 reflections
<i>b</i> = 12.4699 (16) Å	$\theta = 2.9 - 25.8^{\circ}$
c = 13.6367 (17) Å	$\mu = 0.11 \text{ mm}^{-1}$
$\alpha = 89.774 \ (2)^{\circ}$	T = 296 K
$\beta = 78.556 \ (2)^{\circ}$	Block, colorless
$\gamma = 74.153 \ (2)^{\circ}$	$0.32\times0.28\times0.11~mm$
$V = 1183.5 (3) \text{ Å}^3$	
Data collection	

Bruker APEXII CCD diffractometer	4089 independent reflections
Radiation source: fine-focus sealed tube	3254 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.017$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008)	$h = -8 \rightarrow 8$
$T_{\min} = 0.966, \ T_{\max} = 0.988$	$k = -14 \rightarrow 11$

16→16

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.122$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0641P)^2 + 0.2582P]$ where $P = (F_o^2 + 2F_c^2)/3$
4089 reflections	$(\Delta/\sigma)_{max} < 0.001$
345 parameters	$\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.23 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C11A	0.2135 (2)	0.47786 (13)	0.31175 (12)	0.0301 (4)
C12A	0.2209 (2)	0.37261 (13)	0.26227 (12)	0.0297 (4)
C13A	0.2551 (3)	0.36244 (14)	0.15792 (12)	0.0333 (4)
H13A	0.2671	0.4237	0.1207	0.040*
C14A	0.2017 (3)	0.28026 (14)	0.31627 (13)	0.0367 (4)
H14A	0.1790	0.2857	0.3859	0.044*
C11B	0.2752 (3)	0.96745 (14)	0.60365 (12)	0.0333 (4)
C12B	0.2807 (3)	0.86208 (14)	0.65171 (12)	0.0321 (4)
C13B	0.2756 (3)	0.85759 (14)	0.75418 (13)	0.0352 (4)
H13B	0.2664	0.9219	0.7914	0.042*
C14B	0.2936 (3)	0.76531 (15)	0.59755 (13)	0.0394 (5)
H14B	0.2969	0.7672	0.5290	0.047*
C9	0.0711 (3)	0.20961 (15)	0.83423 (13)	0.0378 (4)
H9A	0.0183	0.1467	0.8323	0.045*
H9B	0.0523	0.2512	0.7751	0.045*
C10	-0.0329 (3)	0.28374 (15)	0.92698 (13)	0.0370 (4)
H10A	-0.0148	0.2421	0.9862	0.044*

H10B	0.0201	0.3466	0.9290	0.044*
C1A	0.2689 (2)	0.06357 (13)	0.11169 (12)	0.0285 (4)
C2A	0.2516 (2)	0.16970 (13)	0.16380 (12)	0.0289 (4)
C3A	0.2159 (3)	0.18057 (14)	0.26764 (13)	0.0357 (4)
H3A	0.2012	0.1198	0.3050	0.043*
C4A	0.2713 (3)	0.26267 (14)	0.10956 (12)	0.0325 (4)
H4A	0.2956	0.2570	0.0399	0.039*
C1B	0.3137 (2)	0.55566 (14)	0.79614 (12)	0.0294 (4)
C2B	0.2975 (2)	0.66181 (14)	0.74691 (12)	0.0308 (4)
C3B	0.3016 (3)	0.66656 (15)	0.64432 (13)	0.0391 (4)
H3B	0.3099	0.6024	0.6071	0.047*
C4B	0.2841 (3)	0.75917 (14)	0.80075 (12)	0.0343 (4)
H4B	0.2808	0.7575	0.8693	0.041*
N11A	0.2160 (2)	0.49535 (11)	0.40801 (10)	0.0373 (4)
H11A	0.2204	0.4457	0.4521	0.045*
N12A	0.2104 (3)	0.60166 (12)	0.42518 (11)	0.0446 (4)
N13A	0.2043 (3)	0.64840 (12)	0.34094 (11)	0.0426 (4)
N14A	0.2065 (2)	0.57367 (12)	0.26830 (10)	0.0355 (4)
N11B	0.2501 (3)	0.98954 (12)	0.51052 (11)	0.0436 (4)
H11B	0.2368	0.9431	0.4679	0.052*
N12B	0.2491 (3)	1.09568 (13)	0.49410 (12)	0.0527 (5)
N13B	0.2731 (3)	1.13653 (13)	0.57554 (12)	0.0506 (5)
N14B	0.2906 (3)	1.05895 (12)	0.64532 (11)	0.0417 (4)
N9	0.2778 (2)	0.16876 (11)	0.83363 (10)	0.0322 (3)
H9C	0.3286	0.2261	0.8290	0.048*
H9D	0.3353	0.1206	0.7815	0.048*
H9E	0.2945	0.1350	0.8901	0.048*
N10	-0.2399 (2)	0.32474 (11)	0.92681 (10)	0.0315 (3)
H10C	-0.2562	0.3631	0.8726	0.047*
H10D	-0.2994	0.3688	0.9814	0.047*
H10E	-0.2888	0.2670	0.9263	0.047*
N1A	0.2669 (2)	0.05241 (11)	0.01421 (10)	0.0339 (4)
N2A	0.2887 (2)	-0.05668 (12)	-0.00421 (11)	0.0381 (4)
N3A	0.3040 (2)	-0.10827 (12)	0.07894 (11)	0.0392 (4)
N4A	0.2908 (2)	-0.03469 (12)	0.15402 (10)	0.0351 (4)
N1B	0.3320 (2)	0.54178 (11)	0.89155 (10)	0.0346 (4)
N2B	0.3495 (2)	0.43315 (12)	0.90616 (11)	0.0385 (4)
N3B	0.3432 (2)	0.38426 (12)	0.82212 (11)	0.0404 (4)
N4B	0.3198 (2)	0.45938 (12)	0.75156 (11)	0.0376 (4)
01	0.2556 (2)	0.37535 (11)	0.57068 (10)	0.0567 (4)
H1B	0.2661	0.3062	0.5750	0.085*
H1A	0.2766	0.4000	0.6234	0.085*
O2	0.2347 (3)	0.87668 (13)	0.34653 (11)	0.0842 (7)
H2A	0.2303	0.8101	0.3399	0.126*
H2B	0.2537	0.9038	0.2915	0.126*

Atomic displacement parameters	(\mathring{A}^2)
Atomic alsplacement parameters	(A)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11A	0.0383 (10)	0.0262 (9)	0.0257 (8)	-0.0075 (7)	-0.0084 (7)	0.0014 (7)
C12A	0.0370 (10)	0.0251 (9)	0.0269 (9)	-0.0077 (7)	-0.0081 (7)	0.0007 (7)
C13A	0.0496 (11)	0.0261 (9)	0.0284 (9)	-0.0146 (8)	-0.0120 (8)	0.0040 (7)
C14A	0.0569 (12)	0.0319 (10)	0.0227 (8)	-0.0146 (8)	-0.0084 (8)	0.0012 (7)
C11B	0.0463 (11)	0.0281 (9)	0.0252 (9)	-0.0100 (8)	-0.0069 (7)	0.0005 (7)
C12B	0.0423 (11)	0.0261 (9)	0.0287 (9)	-0.0099 (7)	-0.0087 (7)	0.0024 (7)
C13B	0.0513 (12)	0.0265 (9)	0.0292 (9)	-0.0122 (8)	-0.0096 (8)	0.0003 (7)
C14B	0.0643 (13)	0.0319 (10)	0.0253 (9)	-0.0141 (9)	-0.0157 (8)	0.0038 (7)
C9	0.0398 (11)	0.0394 (10)	0.0331 (10)	-0.0069 (8)	-0.0104 (8)	-0.0061 (8)
C10	0.0381 (11)	0.0406 (10)	0.0323 (9)	-0.0104 (8)	-0.0083 (8)	-0.0046 (8)
C1A	0.0347 (10)	0.0261 (9)	0.0266 (8)	-0.0115 (7)	-0.0069 (7)	0.0029 (7)
C2A	0.0351 (10)	0.0244 (8)	0.0292 (9)	-0.0092 (7)	-0.0099 (7)	0.0010 (7)
C3A	0.0563 (12)	0.0252 (9)	0.0284 (9)	-0.0167 (8)	-0.0077 (8)	0.0050 (7)
C4A	0.0459 (11)	0.0307 (9)	0.0240 (8)	-0.0135 (8)	-0.0103 (7)	0.0029 (7)
C1B	0.0352 (10)	0.0272 (9)	0.0279 (9)	-0.0107 (7)	-0.0083 (7)	0.0014 (7)
C2B	0.0368 (10)	0.0292 (9)	0.0279 (9)	-0.0109 (7)	-0.0081 (7)	0.0020 (7)
C3B	0.0630 (13)	0.0266 (9)	0.0304 (9)	-0.0137 (9)	-0.0142 (9)	-0.0006 (7)
C4B	0.0496 (11)	0.0312 (9)	0.0230 (8)	-0.0126 (8)	-0.0074 (8)	0.0014 (7)
N11A	0.0625 (11)	0.0240 (8)	0.0287 (8)	-0.0130 (7)	-0.0160 (7)	0.0025 (6)
N12A	0.0762 (12)	0.0290 (8)	0.0331 (8)	-0.0175 (8)	-0.0179 (8)	0.0004 (7)
N13A	0.0665 (12)	0.0287 (8)	0.0354 (9)	-0.0157 (7)	-0.0134 (8)	-0.0017 (7)
N14A	0.0526 (10)	0.0267 (8)	0.0292 (8)	-0.0123 (7)	-0.0116 (7)	0.0017 (6)
N11B	0.0780 (13)	0.0284 (8)	0.0289 (8)	-0.0186 (8)	-0.0163 (8)	0.0032 (6)
N12B	0.0961 (15)	0.0315 (9)	0.0346 (9)	-0.0219 (9)	-0.0170 (9)	0.0077 (7)
N13B	0.0888 (14)	0.0299 (9)	0.0341 (9)	-0.0189 (9)	-0.0116 (9)	0.0036 (7)
N14B	0.0689 (12)	0.0283 (8)	0.0296 (8)	-0.0165 (7)	-0.0098 (7)	0.0032 (6)
N9	0.0397 (9)	0.0283 (8)	0.0284 (7)	-0.0087 (6)	-0.0074 (6)	-0.0002 (6)
N10	0.0387 (9)	0.0260 (7)	0.0297 (8)	-0.0083 (6)	-0.0078 (6)	0.0008 (6)
N1A	0.0479 (9)	0.0276 (8)	0.0287 (8)	-0.0122 (7)	-0.0111 (7)	0.0003 (6)
N2A	0.0535 (10)	0.0304 (8)	0.0324 (8)	-0.0151 (7)	-0.0086 (7)	-0.0019 (6)
N3A	0.0553 (10)	0.0283 (8)	0.0365 (9)	-0.0177 (7)	-0.0064 (7)	-0.0013 (7)
N4A	0.0505 (10)	0.0274 (8)	0.0303 (8)	-0.0153 (7)	-0.0083 (7)	0.0024 (6)
N1B	0.0485 (10)	0.0287 (8)	0.0281 (8)	-0.0123 (7)	-0.0092 (7)	0.0045 (6)
N2B	0.0539 (10)	0.0309 (8)	0.0347 (8)	-0.0161 (7)	-0.0122 (7)	0.0074 (6)
N3B	0.0562 (10)	0.0301 (8)	0.0379 (9)	-0.0161 (7)	-0.0106 (7)	0.0042 (7)
N4B	0.0576 (10)	0.0281 (8)	0.0320 (8)	-0.0170 (7)	-0.0135 (7)	0.0039 (6)
01	0.1072 (13)	0.0371 (8)	0.0373 (7)	-0.0283 (8)	-0.0303 (8)	0.0085 (6)
02	0.190 (2)	0.0513 (10)	0.0361 (8)	-0.0628 (12)	-0.0398 (11)	0.0109 (7)
Geometric p	arameters (Å, °)					

C11A—N14A	1.324 (2)	C1B—N4B	1.334 (2)
C11A—N11A	1.336 (2)	C1B—N1B	1.340 (2)
C11A—C12A	1.461 (2)	C1B—C2B	1.468 (2)
C12A—C14A	1.389 (2)	C2B—C4B	1.391 (2)

C12A—C13A	1.395 (2)	C2B—C3B	1.395 (2)
C13A—C4A	1.375 (2)	СЗВ—НЗВ	0.9300
C13A—H13A	0.9300	C4B—H4B	0.9300
C14A—C3A	1.380 (2)	N11A—N12A	1.335 (2)
C14A—H14A	0.9300	N11A—H11A	0.8600
C11B—N14B	1.319 (2)	N12A—N13A	1.289 (2)
C11B—N11B	1.336 (2)	N13A—N14A	1.3574 (19)
C11B—C12B	1.460 (2)	N11B—N12B	1.340 (2)
C12B—C14B	1.388 (2)	N11B—H11B	0.8600
C12B—C13B	1.392 (2)	N12B—N13B	1.287 (2)
C13B—C4B	1.372 (2)	N13B—N14B	1.353 (2)
C13B—H13B	0.9300	N9—H9C	0.8900
C14B—C3B	1.377 (2)	N9—H9D	0.8900
C14B—H14B	0.9300	N9—H9E	0.8900
C9—N9	1.471 (2)	N10—H10C	0.8900
C9—C10	1.510 (2)	N10—H10D	0.8900
С9—Н9А	0.9700	N10—H10E	0.8900
С9—Н9В	0.9700	N1A—N2A	1.3440 (19)
C10—N10	1.475 (2)	N2A—N3A	1.311 (2)
С10—Н10А	0.9700	N3A—N4A	1.349 (2)
C10—H10B	0.9700	N1B—N2B	1.3430 (19)
C1A—N4A	1.336 (2)	N2B—N3B	1.315 (2)
C1A—N1A	1.340 (2)	N3B—N4B	1.3431 (19)
C1A—C2A	1.467 (2)	O1—H1B	0.8477
C2A—C3A	1.388 (2)	01—H1A	0.8408
C2A—C4A	1.398 (2)	02—H2A	0.8464
СЗА—НЗА	0.9300	O2—H2B	0.8243
С4А—Н4А	0.9300		
N144_C114_N114	107 27 (14)	C2A_C4A_H4A	119.6
N14A $C11A$ $C12A$	107.27 (14)	N4B-C1B-N1B	110.77 (14)
N11A - C11A - C12A	126.82 (15)	N4B_C1B_C2B	124.99(14)
C14A - C12A - C13A	118 65 (15)	N1B - C1B - C2B	124.99(11)
$C_{14A} = C_{12A} = C_{11A}$	121 72 (15)	C4B = C2B = C3B	118 44 (15)
$C_{13A} = C_{12A} = C_{11A}$	121.72(13) 119 58 (14)	C4B = C2B = C1B	120.84(15)
C44 - C134 - C124	120.61 (15)	$C_{4B} = C_{2B} = C_{1B}$	120.64(15)
$C4\Delta = C13\Delta = H13\Delta$	119.7	$C_{14B} - C_{3B} - C_{2B}$	120.66 (15)
$C_{4A} = C_{13A} = H_{13A}$	119.7	$C_{14}B = C_{3}B = H_{3}B$	110 7
$C_{12A} - C_{13A} - C_{12A}$	120.65 (16)	C^{2B} C^{3B} H^{3B}	119.7
C_{3A} C_{14A} H_{14A}	110 7	$C_{13B} - C_{4B} - C_{2B}$	120.90 (15)
C_{12} C_{14} H_{14}	119.7	C13B - C4B - H4B	110.5
N14B_C11B_N11B	107.58 (15)	C^{2B}	119.5
N14B - C11B - C12B	107.58 (15)	N124 - N114 - C114	109.55 (14)
N11B-C11B-C12B	126.46 (15)	N12A = N11A = H11A	105.55 (14)
C14B $C12B$ $C12B$	118 83 (15)	$C11\Delta$ _N11 Δ _H11 Λ	125.2
$C_{14B} - C_{12B} - C_{13B}$	121 69 (15)	$N13\Delta N12\Delta N11\Lambda$	106 35 (14)
$C_{13}B = C_{12}B = C_{11}B$	121.07 (13)	N12A_N12A_N14A	100.55(14) 110.58(14)
C4B_C13B_C12B	120.58 (16)	$\frac{112}{114} \frac{113}{1134} \frac{114}{1134}$	106.25(14)
C4B - C13B - C12B	110.7	C11B_N11B_N12B	100.23(13) 109.11(14)
C12B_C13B_H12B	119.7	C11B_N11B_H11P	105.11 (14)
0120-0130-11130	11/./	UID-NID-IIID	120.7

C3B—C14B—C12B	120.60 (16)	N12B—N11B—H11B	125.4
C3B—C14B—H14B	119.7	N13B—N12B—N11B	106.27 (14)
C12B—C14B—H14B	119.7	N12B—N13B—N14B	110.78 (14)
N9—C9—C10	110.58 (14)	C11B—N14B—N13B	106.26 (14)
N9—C9—H9A	109.5	C9—N9—H9C	109.5
С10—С9—Н9А	109.5	C9—N9—H9D	109.5
N9—C9—H9B	109.5	H9C—N9—H9D	109.5
С10—С9—Н9В	109.5	С9—N9—H9E	109.5
Н9А—С9—Н9В	108.1	H9C—N9—H9E	109.5
N10-C10-C9	110.26 (14)	H9D—N9—H9E	109.5
N10-C10-H10A	109.6	C10-N10-H10C	109.5
C9—C10—H10A	109.6	C10-N10-H10D	109.5
N10-C10-H10B	109.6	H10C-N10-H10D	109.5
С9—С10—Н10В	109.6	C10—N10—H10E	109.5
H10A-C10-H10B	108.1	H10C—N10—H10E	109.5
N4A—C1A—N1A	110.91 (14)	H10D—N10—H10E	109.5
N4A—C1A—C2A	124.96 (14)	C1A—N1A—N2A	105.64 (13)
N1A—C1A—C2A	124.13 (14)	N3A—N2A—N1A	108.65 (13)
C3A—C2A—C4A	118.34 (15)	N2A—N3A—N4A	110.11 (13)
C3A—C2A—C1A	121.17 (14)	C1A—N4A—N3A	104.69 (13)
C4A—C2A—C1A	120.49 (15)	C1B—N1B—N2B	105.69 (13)
C14A—C3A—C2A	120.94 (16)	N3B—N2B—N1B	108.54 (13)
С14А—С3А—НЗА	119.5	N2B—N3B—N4B	109.96 (13)
С2А—С3А—НЗА	119.5	C1B—N4B—N3B	105.03 (13)
C13A—C4A—C2A	120.80 (15)	H1B—O1—H1A	108.9
C13A—C4A—H4A	119.6	H2A—O2—H2B	110.7

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2B…N4A ⁱ	0.82	2.02	2.843 (2)	177.
O2—H2A…N13A	0.85	2.08	2.919 (2)	173.
O1—H1A···N4B	0.84	2.02	2.857 (2)	179.
O1—H1B···N13B ⁱⁱ	0.85	2.10	2.946 (2)	174.
N10—H10E…N3A ⁱⁱⁱ	0.89	2.02	2.869 (2)	160.
N10—H10D…N1B ^{iv}	0.89	2.00	2.848 (2)	159.
N10—H10C…N14A ^v	0.89	2.08	2.938 (2)	163.
N9—H9E…N1A ^{vi}	0.89	1.98	2.8517 (19)	165.
N9—H9D…N14B ⁱⁱ	0.89	2.13	2.888 (2)	143.
N9—H9C···N3B	0.89	2.01	2.856 (2)	159.
N11B—H11B…O2	0.86	1.86	2.685 (2)	161.
N11A—H11A…O1	0.86	1.87	2.6903 (19)	160.

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*, *y*-1, *z*; (iii) -*x*, -*y*, -*z*+1; (iv) -*x*, -*y*+1, -*z*+2; (v) -*x*, -*y*+1, -*z*+1; (vi) *x*, *y*, *z*+1.

Fig. 2